Degenerate Sheffer sequences and λ-Sheffer sequences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riordan Arrays, Sheffer Sequences and “Orthogonal” Polynomials

Riordan group concepts are combined with the basic properties of convolution families of polynomials and Sheffer sequences, to establish a duality law, canonical forms ρ(n,m) = ( n m ) cFn−m(m), c 6= 0, and extensions ρ(x, x − k) = (−1) xcFk(x), where the Fk(x) are polynomials in x, holding for each ρ(n,m) in a Riordan array. Examples ρ(n,m) = ( n m ) Sk(x) are given, in which the Sk(x) are “or...

متن کامل

Sheffer sequences, probability distributions and approximation operators

We present a new method to compute formulas for the action on monomials of a generalization of binomial approximation operators of Popoviciu type, or equivalently moments of associated discrete probability distributions with finite support. These quantities are necessary to check the assumptions of the Korovkin Theorem for approximation operators, or equivalently the Feller Theorem for converge...

متن کامل

The classical umbral calculus: Sheffer sequences

Following the approach of Rota and Taylor [17], we present an innovative theory of Sheffer sequences in which the main properties are encoded by using umbrae. This syntax allows us noteworthy computational simplifications and conceptual clarifications in many results involving Sheffer sequences. To give an indication of the effectiveness of the theory, we describe applications to the well-known...

متن کامل

Self - Inverse Sheffer Sequences and Riordan

In this short note we focus on self-inverse Sheffer sequences and involutions in the Riordan group. We translate the results of Brown and Kuczma on self-inverse sequences of Sheffer polynomials to describe all involutions in the Riordan group.

متن کامل

Identities on Bell polynomials and Sheffer sequences

In this paper, we study exponential partial Bell polynomials and Sheffer sequences. Two new characterizations of Sheffer sequences are presented, which indicate the relations between Sheffer sequences and Riordan arrays. Several general identities involving Bell polynomials and Sheffer sequences are established, which reduce to some elegant identities for associated sequences and cross sequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2021

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2020.124521